Wastewater Aeration

Floating Brush Aerators

Enhance your wastewater process with better aeration and mixing

More efficient aeration and mixing reduces your wastewater plant's energy demand

Floating Brush Aerators can be used in complete or partial mixed lagoons, aerobic digesters, oxidation ditches, aeration basins, and equalization basins

What is a Floating Brush Aerator?

A floating brush aerator operates in wastewater by using a spinning, horizontal-rotor assembly that sheers and mixes the wastewater

Welded brushes on the rotor assembly sheer the wastewater and create fine bubbles that capture oxygen in the air and absorb oxygen into the wastewater

In addition to aeration, the unique horizontal flow pattern created by the floating brush aerator creates a mixing profile that mixes a much broader area when compared to other high-speed surface aerators

Why use a floating brush aerator?

Floating brush aerators have about a 30% higher Standard Aeration Efficiency (SAE) when compared to aspirating and vertical turbine type aerators

In addition, floating brush aerators also have a much higher mixing rate (gpm/hp) than aspirating and vertical turbine type aerators

The floating brush aerators superior oxygen transfer and mixing rates create wastewater systems that operate with less horsepower.

Less hp=Less Energy= More Money

ECS House Industries, Inc. 10hp Oxygen Transfer test

@ 80% to 84% motor load we Produce 3.1-3.2 lbs.O2/hp/hr

Compared to other surface aerators:

Aspirating Aerators: 2.4 lbs.O2/hp/hr

Vertical Turbine Aerators: 2.2 lbs.O2/hp/hr

Oxygen Transfer Test

Results of oxygen transfer test for the SDB120TA3 Electric Horizontal-Rotor Floating Aerator are summarized below. Test data and analysis is provided in Appendix B.

SN: 17831

Delivered Horsepower

8.0 (80% motor load)

SOTR

24.45 lbs/hr

SAE

3.1 lbs/hp-hr

SN: 17832

Delivered Horsepower

7.9 (79% motor load)

SOTR

24.51 lbs/hr

SAE

3.1 lbs/hp-hr

SN: 17833

Delivered Horsepower

8.2 (82% motor load)

SOTR

25.30 lbs/hr

SAE

3.1 Ibs/hp-hr

SN: 17834

Delivered Horsepower

8.4 (84% motor load)

SOTE

27.05 Ibs/lar

SAE

3.2 lbs/hr

Professional Engineer:

Date

REGISTE: PROFESSI ENGINE

m. Craig Night P.E.

-7-

ECS House Industries, Inc. 5hp Mixing Test

12' from rotor: 4,135 gpm/hp

16' from rotor: 5,021 gpm/hp

20' from rotor: 5,103 gpm/hp

Aspirating & Vertical Turbine Mixing rates range from 1,800-2,300 gpm/hp

4		
T.		
ij.	Velocity Profile	
-24	Results of the velocity profile test for the SDB059TA2 Electric Horizontal-Rotor Floating	
	Aerator are provided in Exhibit No. 3.	
	Pumping Rate	
_	Results of the pumping rate calculations for the SDB059TA2 Electric Horizontal-Rotor Floating	
1	Aerator are summarized below. Copies of the calculations are provided in Appendix D.	
	Distance from	Volumetric Flow Rate per
	Aerator's Rotor	Delivered Horsepower
	12 feet	4,135 gpm/hp
	16 feet	5,021 gpm/hp
	20 feet	5,103 gpm/hp
ij		
1		*:
•		
ij.	Professional Engineer:	12/6/12 Date
4		AND A TE
9	Wm. Craig Light, P.E.	REGISTERED
4	The Gang Light, 135.	PROFESSIONAL ENGINEER & No. 11253
9		LAM C. Williams
4		
•		
		-7-

Lagoon Application

Floating Brush Aerator Advantages:

Shore Mounted Mooring System

Unique Horizontal Flow Pattern

Complete Oxygen Cap Across the Lagoon

Increased Oxygen Transfer & Mixing Produce a Higher Quality Effluent

Cable Anchored Lagoon Application

Oxygen Cap covers entire lagoon surface

Easier to access the aerator

Floating Brush Aerators only have to use one cable versus multiple anchoring cables

Aerial view

Mixing profile of bio-solids storage lagoon

Complete mix and oxygen cap cover the lagoon's surface

Floating Brush Aerators

Oxidation Ditch Application

20% Horsepower Reduction due to Higher Oxygen Transfer & Mixing Rates

Routine & Easy Maintenance Create Less Downtime for Plant Personnel

Oxidation Ditch

Custom retro-fit anchoring

Splash shields are standard

Access platforms

Floating brush aerators can pivot to fluctuating water levels, maximizing oxygen transfer and mixing at all times

Orbal Plant Retro-Fit

Unique anchoring system

Access to aerators

Reduced overall horsepower by 35%

Value Added Engineering & Design

CNC Machined Stub-Shaft
assemblies
Grease-Lubricated Bearings
Splash shields
Sealed, Direct-Drive
Rotor Assembly
Stainless Steel Floatation Tanks
Floatation Band Attachments
Heavy Duty, Pipe Frame
Adjustable Rotor Depth
Testing Facility

CNC Machined, Stub Shaft Assemblies

Piloted, Bolt-In Stub Shaft Assemblies

Shafts are true, less than .001 tolerance

Alignment of the shafts create a smooth operation and a high-speed direct-drive

Shaft replacements can occur in the field

All shafts are fabricated from 316 stainless steel

Enclosed, Direct-Drive

Sealed drive enclosure

High-speed coupled direct-drive

Internal fan for cooling

Easy access with hinged cover

Oil Change Kit

Oil change should occur every 2,500 hours

Battery operated and easy to operate

Grease-Lubricated Bearings

Corrosion resistant, grease lubricated bearings

Lubricated automatically with a spring, loaded lube site

Refill grease approximately every 6 months

We do not use wastewater to lubricate bearings

Splash Shields

Will not allow splash and/or debris to accumulate around drive enclosure and non-drive end bearing

Double-sealed protection will not allow debris to penetrate drive enclosure and non-drive end bearing enclosure

Double-seal also uses a flinger to ensure water and debris will not "wick" down the drive and non-drive shafts

Rotor Assembly

Heavy walled, schedule 40 pipe

Our rotor pipe is twice as thick as the competition's rotor

Heavy walled rotor pipe will not deflect, warp due to the heat created by welding the brushes to the rotor pipe

Brushes are welded to the rotor pipe on both sides for added durability and strength

Brush Assembly

Robotic Welder

Consistent welds

Welds both sides of the brush to the rotor pipe

ECS House Industries, Inc.Stainless Steel Flotation Tanks

304L stainless steel construction

16 gauge thickness

Pressure tested

Filled with closed-cell foam

Floatation Band Attachments

304L stainless steel

7 gauge thickness

Extra support gussets

Rubber insulator between band and float used to prevent electrolysis

Heavy Duty, Pipe Frame

Schedule 40 pipe frame

Welded together for strength and durability

Adjustable Rotor Depth

Four-point, rotor depth adjustment to assure proper amperage

Stainless steel all-threads with brass nuts are adjustable. Once set, re-adjustment is not necessary

Testing Facility

On-site test pool for oxygen transfer & mixing tests

Research & development on different aerators sizes and custom retro-fit designs

Chad House, CEO ECS House Industries, Inc.

3720 Highway 1 South Cherry Valley, Arkansas 72324

(870) 588-3773 office (870) 588-4669 fax

www.houseindustriesinc.com